高中数学的课程目标及知识点结构

一、学科核心素养与课程目标

(一)学科核心素养

学科核心素养是育人价值的集中体现,是学生通过学科学习而逐步形成的正确价值观念、必备品格和关键能力。数学学科核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现,是在数学学习和应用的过程中逐步形成和发展的。数学学科核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。这些数学学科核心素养既相对独立、又相互交融,是一个有机的整体。学科网

1.数学抽象

数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养。主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征。 数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。 数学抽象主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法与思想,认识数学结构与体系。 通过高中数学课程的学习,学生能在情境中抽象出数学概念、命题、方法和体系,积累从具体到抽象的活动经验;养成在日常生活和实践中一般性思考问题的习惯,把握事物的本质,以简驭繁;运用数学抽象的思维方式思考并解决问题。

2.逻辑推理

逻辑推理是指从一些事实和命题出发,依据规则推出其他命题的素养。主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比,一类是从一般到特殊的推理,推理形式主要有演绎。 逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质。 逻辑推理主要表现为:掌握推理基本形式和规则,发现问题和提出命题,探索和表述论证过程,理解命题体系,有逻辑地表达与交流。 通过高中数学课程的学习,学生能掌握逻辑推理的基本形式,学会有逻辑地思考问题;能够在比较复杂的情境中把握事物之间的关联,把握事物发展的脉络;形成重论据、有条理、合乎逻辑的思维品质和理性精神,增强交流能力。

3.数学建模

数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养。数学建模过程主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题。 数学模型搭建了数学与外部世界联系的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。 数学建模主要表现为:发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题。 通过高中数学课程的学习,学生能有意识地用数学语言表达现实世界,发现和提出问题,感悟数学与现实之间的关联;学会用数学模型解决实际问题,积累数学实践的经验;认识数学模型在科学、社会、工程技术诸多领域的作用,提升实践能力,增强创新意识和科学精神。

4.直观想象

直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养。主要包括:借助空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决问题的思路。 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形成论证思路、进行数学推理、构建抽象结构的思维基础。 直观想象主要表现为:建立形与数的联系,利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物。 通过高中数学课程的学习,学生能提升数形结合的能力,发展几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意识;形成数学直观,在具体的情境中感悟事物的本质。

5.数学运算

数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养。主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等。 数学运算是解决数学问题的基本手段。数学运算是演绎推理,是计算机解决问题的基础。 数学运算主要表现为:理解运算对象,掌握运算法则,探究运算思路,求得运算结果。 通过高中数学课程的学习,学生能进一步发展数学运算能力;有效借助运算方法解决实际问题;通过运算促进数学思维发展,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神。

6.数据分析

数据分析是指针对研究对象获取数据,运用数学方法对数据进行整理、分析和推断,形成关于研究对象知识的素养。数据分析过程主要包括:收集数据,整理数据,提取信息,构建模型,进行推断,获得结论。 数据分析是研究随机现象的重要数学技术,是大数据时代数学应用的主要方法,也是“互联网+”相关领域的主要数学方法,数据分析已经深入到科学、技术、工程和现代社会生活的各个方面。 数据分析主要表现为:收集和整理数据,理解和处理数据,获得和解释结论,概括和形成知识。 通过高中数学课程的学习,学生能提升获取有价值信息并进行定量分析的意识和能力;适应数字化学习的需要,增强基于数据表达现实问题的意识,形成通过数据认识事物的思维品质,积累依托数据探索事物本质、关联和规律的活动经验。

(二)课程目标

通过高中数学课程的学习,学生能获得进一步学习以及未来发展所必需的数学基础知识、基本技能、基本思想、基本活动经验(简称“四基”);提高从数学角度发现和提出问题的能力、分析和解决问题的能力(简称“四能”)。学——科网 在学习数学和应用数学的过程中,学生能发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养。 通过高中数学课程的学习,学生能提高学习数学的兴趣,增强学好数学的自信心,养成良好的数学学习习惯,发展自主学习的能力;树立敢于质疑、善于思考、严谨求实的科学精神;不断提高实践能力,提升创新意识;认识数学的科学价值、应用价值、文化价值和审美价值。

◎ 高中数学知识点结构
◎ 高中数学重要知识点-椭圆的定义
已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.(1)求椭圆的方程;(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围. 设椭圆C:的离心率,右焦点到直线1的距离,O为坐标原点.(1)求椭圆C的方程;(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦A 已知椭圆的离心率为.(1)若原点到直线的距离为,求椭圆的方程;(2)设过椭圆的右焦点且倾斜角为的直线和椭圆交于A,B两点.当,求b的值; 设椭圆C∶+=1(a>b>0)过点(0,4),离心率为.(1)求C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标. 设F1,F2分别是椭圆+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF1⊥PF2,则点P的横坐标为()A.1B.C.2D. 已知椭圆的离心率为,过的左焦点的直线被圆截得的弦长为.(1)求椭圆的方程;(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不 椭圆的离心率为,其左焦点到点的距离为.(1)求椭圆的标准方程;(2)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐 已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点.(1)求椭圆Γ的方程;(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且.①证明:②求△AOB 直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).(1)求曲线的离心率;(2)求在k=0,0<b<1的条件下,S的最大值;(3)当|AB|=2,S=1时,求直线AB的方程. 已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.(1)求椭圆的方程;(2)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线
◎ 高中数学重要知识点-数学归纳法
若不等式1n+1+1n+2+…+13n+1>a24对一切正整数n都成立,(1)猜想正整数a的最大值,(2)并用数学归纳法证明你的猜想. 数列{an}的前n项和Sn与an满足:Sn=1-nan(n∈N*),求{an}的通项公式.(注意:本题用数学归纳法做,其它方法不给分) (1)用反证法证明:如果x>12,那么x2+2x-1≠0;(2)用数学归纳法证明:11×3+13×5+…+1(2n-1)×(2n+1)=n2n+1(n∈N*). 设数列{an}的前n项和为Sn,且a1=12,2Sn=SnSn-1+1(n≥2),求:(1)S1,S2,S3;(2)猜想数列{Sn}的通项公式,并用数学归纳法证明. 数列{an}的通项an=(-1)n+1?n2,观察以下规律:a1=1a1+a2=1-4=-3=-(1+2)a1+a2+a3=1-4+9=6=1+2+3…试写出求数列{an}的前n项和Sn的公式,并用数学归纳法证明. 已知数列{an}中,a1=1,且an=nn-1an-1+2n?3n-2(n≥2,n∈N*).(1)求a2,a3,a4的值;(2)写出数列{an}的通项公式,并用数学归纳法证明. 用数学归纳法证明1n+1+1n+2+1n+3+…+1n+n≥124(n∈N*)由n=k到n=k+1时,不等式左边应添加的项是()A.12(k+1)B.12k+1+12k+2C.12k+1+12k+2-1k+1D.12k+1+12k+2-1k+1-1k+2 用数学归纳法证明1+q+q2+…+qn+1=qn+2-1q-1(q≠1).在验证n=1等式成立时,等式的左边的式子是()A.1B.1+qC.1+q+q2D.1+q+q2+q3 已知数列{an}的前n项和Sn=1-nan(n∈N*)(1)计算a1,a2,a3,a4;(2)猜想an的表达式,并用数学归纳法证明你的结论. 当n∈N*时,Sn=1-12+13-14+…+12n-1-12n,Tn=1n+1+1n+2+1n+3+…+12n.(Ⅰ)求S1,S2,T1,T2;(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.
◎ 高中数学重要知识点-椭圆的参数方程
在线AV片